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We report on a theoretical study of the magnetodipolar coupling and synchronization between two vortex-based
spin-torque nano-oscillators (STVOs). In this work we study the dependence of the coupling efficiency on the
relative magnetization parameters of the vortices in the system. This study is performed in order to propose an
optimized configuration of the vortices for synchronizing STVOs. For this purpose, we combine micromagnetic
simulations, the Thiele equation approach, and the analytical macrodipole approximation model to identify
the optimized configuration for achieving phase-locking between neighboring oscillators. Notably, we compare
vortices configurations with parallel (P) core polarities and with opposite (AP) core polarities. We demonstrate that
the AP core configuration exhibits a coupling strength about three times higher than in the P core configuration.
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I. INTRODUCTION

In the last decade great attention has been drawn to
the phase-locking phenomena of spin-torque nano-oscillators
(STNOs) [1–23]. STNOs are anticipated to be promising
devices for submicron-scale microwave synthesizers because
of their high emission frequency tunability [24–27]. However,
an important issue with such devices regarding their practical
realization is their low-output oscillation power and low spec-
tral stability. A possible solution to these issues could be the
synchronization of a few STNOs [6,19,21,22,26,28]. Synchro-
nization among multiple auto-oscillators can also be useful in
the framework of developing associative memories architec-
tures [29–32]. Previous studies reported on synchronization
of STNOs interacting with others via spin waves [25,26,33],
exchange coupling [6], electric currents [3,28,34], noisy
current injection [19], or via magnetodipolar interaction
[21,22,35–41].

Among the various synchronization mechanisms, magne-
todipolar coupling is inherent and efficient as emphasized
in our previous works [21,22] and also in Refs. [35–41]. In
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the present study, we focus on the magnetodipolar interaction
between two vortex-based STNOs.

Single magnetic vortices in cylindrical dots are charac-
terized by two topological parameters [35]. Chirality (C)
determines the curling direction of the in-plane magnetization,
such that C = +1 (C = −1) stands for the counterclockwise
(clockwise) direction. The orientation of the vortex core
magnetization is described by its polarity (P ), which takes a
value of P = +1 (P = −1) for core magnetization aligned
(antialigned) with the out-of-plane (ẑ) axis. The relative
configuration of two interacting vortices can then take four
nonequivalent states, with identical/opposite chiralities and
identical/opposite polarities.

In a previous work [21,22], we studied the capability of two
vortex-based STNOs to synchronize through dipolar coupling.
In this first approach, we have considered only the case of two
vortices with identical polarities and chiralities and already
demonstrated the possibility of observing synchronization. In
the present study, we show that changing the relative polarity
and chirality parameters of the vortices will strongly modify
the interaction between the auto-oscillators and may strongly
modify the efficiency of synchronization. We conduct a numer-
ical study in which we investigate the synchronization prop-
erties for selected combinations of vortex parameters, aiming
at sorting the best combinations of the (C, P ) parameters to
achieve synchronization. We also consider two different elec-
trical connections for the current injection, i.e., parallel and se-
ries connections, corresponding, respectively, to current flow-
ing in the same and in the opposite direction in the two STVOs.
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FIG. 1. (Color online) Schematic of the studied system com-
posed of two magnetic dots, each in a magnetic vortex configuration.
Vortex cores are shown by filled (green) circles. Vortex core positions
are given in polar coordinates, i.e., (X1,ϕ1) and (X2,ϕ2), respectively.
Blue arrows, core-up gyrotropic motion sense; red arrows, core-down
gyrotropic motion sense.

II. PRESENTATION OF THE SYSTEM

The studied system consists of two circular nanopillars with
identical diameters 2R = 200 nm, separated by an interdot dis-
tance L (see Fig. 1). Each incorporates a Permalloy (NiFe) free
magnetic layer (Ms = 800 emu/cm3, A = 1.3×10−6 erg/cm,
α = 0.01) of thickness h = 10 nm, separated by an interme-
diate layer (nonmagnetic metal or tunnel barrier) from a po-
larizing layer with perpendicular magnetization. Considering
their dimensions, each free layer has a magnetic vortex as
its remnant magnetic configuration. The vortex parameters
are referred to as P1,2 and C1,2 for the first and second
pillars. The polarizing layers, whose magnetizations are
identical and oriented along ẑ, are considered in simulations
only through the corresponding current spin polarization
pz1 = pz2=pz = +0.2. The gyrotropic motion of a vortex core
can be driven by spin transfer torque action, by flowing current
above a threshold amplitude through each pillar; in our case,
the current density J = 7×106 A/cm2 (IDC = 2.2 mA). Yet
the current sign in each pillar has to be chosen so that IiPipz <

0 to ensure self-sustained oscillations [42,43]. The core
polarity of each vortex then defines its gyration direction [44]
(see Fig. 1). Indeed, when Pi = +1 (Pi = −1) the vortex core
circular motion is counterclockwise (clockwise).

III. COMBINATIONS OF THE VORTICES
TOPOLOGICAL PARAMETERS

We then consider six possible configurations for which self-
sustained oscillations are achieved in both pillars, reported in
Table I. Note that parallel-core (Pc) configurations correspond
to vortices moving in the same direction, whereas antiparallel-

a) b)

pz =
+0.2

IDC > 0 IDC > 0

Parallel connection

V V

pz =
+0.2

IDC > 0 IDC < 0

VV

Series connection

FIG. 2. (Color online) Illustration of the DC supplied current for
(a) the Pc and (b) the APc configurations, showing the parallel and
series connections, respectively.

TABLE I. Studied configurations with their respective signs of
the vortex parameters (Ci , Pi) and current density (Ji).

Left dot Right dot

Config. C1 P1 J1 C2 P2 J2

Pc1 −1 −1 + −1 −1 +
Pc2 +1 −1 + +1 −1 +
Pc3 −1 −1 + +1 −1 +
APc1 −1 −1 + +1 +1 −
APc2 +1 −1 + −1 +1 −
APc3 −1 −1 + −1 +1 −

core (APc) configurations correspond to vortices moving in
opposite directions.

Considering the different configurations listed in Table I,
the electrical connection must be adapted according to the
relative vortex core polarities in order to fulfill the condition
IiPipz < 0 to ensure self-sustained oscillations [42,43]. As a
consequence, Pc configurations must be alimented using the
parallel connection to ensure the same current sign in both
pillars [see Fig. 2(a)]. On the contrary, APc configurations
have to be supplied with a series connection to ensure opposite
current signs [see Fig. 2(b)].

IV. MACRODIPOLE ANALYTICAL MODEL

To get some insights into the origin of the dependence
in effective coupling (μeff) with vortex configuration, we
concentrate in this section on an analytical model based
on a macrodipole approximation. The dipolar energy (Wint)
between two magnetic dipoles μ1 and μ2 is then given by the
following equation (in CGS units):

Wint = − (3(μ1 · e12)(μ2 · e12) − μ1 · μ2)

‖D12‖3
, (1)

where D12 is the vector between the two dipoles and e12 is a
unit vector parallel to D12.

Considering two planar dipoles induced by the off-centered
vortices in the framework of the two-vortex ansatz (TVA)
[45], μ1 = σC1X1(− sin (ϕ1), cos (ϕ1)) and μ2 =
σC2X2(− sin (ϕ2), cos (ϕ2)), where σ = ξMsV/R, ξ = 2/3,
and V = πR2h. For D12 = (d,0), where d = 2R + L is the
interdipole distance along the x axis, and using Eq (1), one
obtains

Wint = −C1C2
σ 2

2d3
X1X2(cos(ϕ1 − ϕ2) − 3 cos(ϕ1 + ϕ2)), (2)

where ϕ̇i = Piωi .
To illustrate the different situations, we consider synchro-

nized oscillations in the two relative polarity configurations.
For two vortices with the same core polarity (Pc), gyrating
in identical directions at the same frequency ϕ1 − ϕ2 ≈ 0 and
ϕ1 + ϕ2 ≈ 2ω0, so that Eq. (2) gives

W Pc
int = −C1C2

σ 2

2d3
X1X2(1 − 3 cos (2ω0t)). (3)

In contrast, for vortices with opposite polarities (APc), gy-
rating in opposite directions, ϕ1 + ϕ2 ≈ 0 and ϕ1 − ϕ2≈2ω0,
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FIG. 3. (Color online) (a) Dipolar energy (Wint) evolution of two
interacting vortices modeled as macrodipoles and oscillating at the
same frequency. The blue curve corresponds to the identical-polarity
(Pc) case; the red curve, to the opposite-polarity (APc) case. Dashed
colored lines represent the corresponding mean value of the coupling
energies 〈Wint〉.

so that one obtains

WAPc
int = −C1C2

σ 2

2d3
X1X2(cos (2ω0t) − 3). (4)

Equations (3) and (4) show that for a given vortex gyration
frequency ω0 the coupling energy Wint oscillates at twice the
frequency (2ω0). In the Pc case (see blue curve in Fig. 3)
it oscillates with a high amplitude and a small mean value,
whereas in the APc case (see red curve in Fig. 3) it oscillates
with a low amplitude and a larger mean value.

When not synchronized, the two vortices will feel two
oscillating components of the magnetodipolar interaction,
i.e., one at low frequency and one at high frequency. The
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FIG. 4. (Color online) Schematic of the synchronized dynamics
for the Pc configurations, i.e., where P1 = P2.
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FIG. 5. (Color online) Schematic of the synchronized dynamics
for the APc configurations, i.e., where P1 = −P2.

latter one will average out and have a negligible influence
on the phase-locking features, while the low-frequency term
will be responsible for the synchronization phenomenon. The
effective coupling coefficient μeff can be identified writing
〈Wint〉 = μeffC1C2X1X2 for the mean coupling energy and
gives the following results for the Pc and APc relative vortex
core polarity configurations:

μPc
eff = −π2ξ 2R2h2

2d3
,

μAPc
eff = 3

π2ξ 2R2h2

2d3
.

Synchronized states correspond to a minimization of
the average interaction energy. As illustrated here, relative
polarity and chirality signs influence the sign of Wint. As a
consequence, these relative parameters also define the phase
relationship achieved when synchronization occurs. The latter
considerations are illustrated in Figs. 4 and 5.

From this study, we then conclude that the effective
coupling coefficient is predicted to be three times stronger
when polarities are opposite (APc) than when polarities are
identical (Pc). Concurrently, the high-frequency oscillation of
the interaction energy is three times larger in the Pc polarity
configuration compared to the APc case. While this indicates
that APc is the optimal configuration for synchronization, we
must note that this second contribution may affect the locking
phenomenon.

V. THIELE ANALYTICAL APPROACH

The spin-transfer-induced gyrotropic vortex dynamics
can also be described by the Thiele equation approach
[21,43,46,47]:

PiGi × Ẋi + Di · Ẋi − ki(Xi,Ci,Ji)Xi

− FSTT
i (pzi,Ji,Pi) − Fint(Xj ,PiPj ,CiCj ) = 0, (5)
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where Gi = −Gẑ is the gyrovector with G = 2πMsh/γ and
Di = αηiG is the damping coefficient with ηi = 0.5
ln (Ri/(2Lex)) + 3/8 [43], where Lex is the exchange length.
For each pillar, the vortex frequency [48,49] is given by the
ratio between the confinement coefficient ki and the gyrovector
ω0|i = ki/G, with

ki(Xi,Ci,Ji) = kms
i + kOe

i CiJi + (
k′ms
i + k′Oe

i CiJi

)(X2
i

R2
i

)
,

(6)

where kms
i and k′ms

i (kOe
i and k′Oe

i ) correspond to the magne-
tostatic (Oersted field) contribution. The Oersted contribution
will increase the vortex core gyration frequency if the vortex
chirality is along the same direction as the Oersted field
(CiJi > 0) and, respectively, decrease the frequency other-
wise [50]. Gyration amplitudes will also be affected by such
interaction with the Oersted field. To maximize the symmetry
of the system and avoid the Oersted contribution’s bringing
an offset between the two STNO frequencies, we find that the
condition C1J1C2J2 > 0 should be ensured (corresponding to
identical Oersted contributions in both pillars). This excludes
configurations Pc3 and APc3 from Table I from being optimal
configurations for synchronization.

The fourth term in Eq. (5) is the spin transfer force, which,
for the case of a perpendicularly uniform magnetized polarizer,
is written [43]

FSTT
i = κ(Xi × ẑ), (7)

where κ = πγ aJ Msh is the effective spin torque efficiency
on the vortex and aJ = �pzPJ/(2|e|hMs). In this study, we
chose to neglect the field-like torque (FLT) contribution.
While the FLT is negligible in the case of a metallic interme-
diate layer, its amplitude can reach a significant fraction of the
Slonczewski torque in the case of a magnetic tunnel
junction [51]. However, micromagnetic simulations
computed with an FLT contribution of 10% (typical)
of the magnitude of the Slonczewski term showed no
significant influence on the gyrotropic dynamics. A
final term accounts for the interaction dipolar force
between the two neighbored vortices, Fint,j i(X1,2) =
−∂〈Wint〉(X1,X2)/∂X1,2 = −C1C2μeffX2,1, where
μeff is either μP

eff or μAP
eff , depending on the P1P2 sign.

The system of coupled equations for the vortex core motion
given in Eq. (5) provides a dynamical description of the phase
locking between the two cores. We introduce the two variables
� = P1ϕ1 − P2ϕ2 and ε = (X1 − X2)/(X1 + X2). Following
the methodology described by Belanovsky et al. [21], by
linearizing the system around equilibrium trajectories, we
obtain a linear set of equations describing the evolution in
time of the relative phases and amplitudes,

ε̇ = −2αη

(
μeff

G
+ ω0ar2

0

)
ε − μeff

G
�, (8a)

�̇ = −4

(
μeff

G
+ ω0ar2

0

)
ε + 2αη

μeff

G
�, (8b)

where r0 = X0/R is the normalized average gyration radius
and a = k′

ms/kms = 1/4. The two equations (8a) and (8b) are

linear and their eigenvalues are

λ1,2 = −αηω0ar2
0 ±

√
α2η2ω2

0

(
ar2

0

)2 + 4
μ2

eff

G2
− 4

μeff

G
ω0ar2

0 .

In the case of periodic solutions, the phase-locking dynam-
ics is characterized by a phase-locking time (τ ) and a beating
frequency (�) that can be written as

1/τ = −αηω0ar2
0 , (9a)

�2 = −(
αηω0ar2

0

)2 − 4

(
μeff

G

)2

− 4
μeff

G
ω0ar2

0 . (9b)

In the next section, we propose to realize micromagnetic
simulations [52], from which � and τ is extracted from the
phase-locking dynamics. The effective coupling coefficient in
each configuration μeff is then be derived for each considered
configuration by simply reverting Eqs. (9a) and (9b):

μeff(τ,�) = G

2
(1/(ταη) −

√
1/(ταη)2 − �(L)2). (10)

These micromagnetic simulations represent a realistic
picture of the coupled system, as they take into account the non-
punctual geometry of the magnets as well as the full current-
induced Oersted-field contribution, including cross-talk
between nanopillars.

VI. MICROMAGNETIC SIMULATIONS

We first compare the results of micromagnetic simulations
obtained for the two cases Pc1 and APc1 with a separating dis-
tance between nanopillars L = 50 nm. The evolution of radii
and dephasing parameter � is shown in Figs. 6(a) and 6(b),
respectively, and some numerical values are listed in Table II.
These results first confirm that phase-locking is achieved in
both configurations. For both configurations, self-sustained
unlocked oscillations in each pillar start at the same frequency,
but with a random phase shift, and then converge towards a
phase-locked regime in almost-identical phase-locking times
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FIG. 6. (Color online) Vortex core orbital radii and (a) phase
difference � = ϕ1 − ϕ2 and (b) sum � = ϕ1 + ϕ2 obtained by
micromagnetic simulations for the Pc1 and APc1 configurations,
respectively, where L = 50 nm. As shown at the top the chirality
(C) is opposite to the Oersted field (OH) in all the dots (C/OH[↑↓]).
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TABLE II. Numerical values of parameters extracted from mi-
cromagnetic simulations: f is the common oscillation frequency,
X01 (X02) is the left (right) dot vortex steady-state radius, and � is
the dephasing parameter.

Config. f (MHz) X01 (nm) X02 (nm) �

Pc1 468.80 63.59 63.59 → 0
APc1 470.57 64.46 64.46 → 0
APc2 497.75 44.51 44.51 → 0
APc3 476.31 65.59 40.59 → π

(τ ). In their phase-locked state, both vortex cores oscillate with
identical radii.

The phase dynamics obtained by micromagnetic simula-
tions are fitted to � = Ae−t/τ sin(�t + ϕ0) to extract �, the
beating frequency, and τ , the convergence time for phase-
locking (see Table III). The effective coupling values for
L = 50 nm are then deduced: μeff/G = 19.7 MHz for the
Pc configuration and μeff/G = 49.2 MHz for the APc one.
The coupling strength then appears to be stronger in the
AP configuration (∼2.5×) as expected from the macrodipole
model.

The results for the “APc2” and the “APc3” configurations
for L = 50 nm are shown in Fig. 7. Again, in both cases phase-
locking is achieved. In the symmetric case APc2, for which
both chiralities are parallel to the Oersted field, the starting
frequencies are again identical in each pillar, whereas this is
not the case for the APc3 configuration, in which symmetry
is broken by the Oersted field’s being opposed to chirality
in only one pillar. In the latter case, the two auto-oscillators
have to adapt their frequencies to achieve synchronization
to a common frequency f1 = f2 = 476.31 MHz, by shifting
their amplitudes accordingly. As highlighted previously, the
micromagnetic simulations confirm that the equilibrium phase
shift changes from |�| = 0 to |�| = π when the sign of the
respective chiralities sign(C1C2) changes.
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FIG. 7. (Color online) Vortex core orbital radii and phase sum
� = ϕ1 + ϕ2 where L = 50 nm for configurations (a) “APc2,”
where both the vortex chiralities are aligned with the Oersted field
(C/OH[↑↑]), and (b) “APc3,” where the vortex in the right (left)
dot has an antialigned (aligned) chirality with the current-induced
Oersted field C/OH[↑↓] (C/OH[↑↑]).

TABLE III. Numerical values of τ , �, μeff/G, and 〈Wint〉 obtained
after combining micromagnetic simulations and our Thiele equation
approach for Pc1 and APc1 configurations. The last column, listing
the mean interaction energy computed by Eq. (10), also lists the
numerical evaluation using Eq. (11) in brackets.

Config. τ (ns) � (MHz) μeff/G (MHz) 〈Wint〉 (×10−14 erg)

Pc1 82.78 40.136 19.7 −22.75 [−27.08]
APc1 71.20 67.380 49.2 −58.31 [−64.23]

VII. NUMERICAL APPROACH

To investigate further the difference in coupling strength be-
tween Pc and APc configurations, and validate the macrodipole
approach, a more precise numerical calculation of the dipolar
energy is proposed. The dipolar interaction energy is here
summed up over the full magnetization distributions obtained
by micromagnetic simulations. It consists in taking into
account all the spin-to-spin, i.e., cell-to-cell, interactions
between the left pillar and the right pillar as

W num
int =

N1∑
i=1

N2∑
j=1

Wint,ij , (11)

where Wint,ij = −(3(μi · eij )(μj · eij ) − μi · μj )/‖Dij‖3. N1

(N2) is the number of cells in the left (right) dot.
As illustrated in Fig. 8 each dot can be seen as being

composed of two distinct regions: the outer part (OP) and the
inner part (IP) with respect to the vortex gyrotropic trajectory.
The OP is a quasistatic region and the IP can be considered an
oscillating dipole. The OP contribution is neglected, as it does
not contribute to the dynamical coupling. Indeed, as shown
in Fig. 10 the values of 〈W num

int 〉 are close to the values of
〈Wint〉 obtained through the macrodipole and Thiele equation
approach when the OP region is neglected.

Figure 9 shows the results for an edge-to-edge distance
between two STVOs of L = 50 nm for the APc1 configuration
[(red) triangles] and Pc1 configuration [filled (blue) circles].
The dashed lines give the mean value of the interacting dipolar
energy 〈W num

int 〉. In both cases and as expected, the energy
W num

int oscillates at a frequency that corresponds to twice the
gyrotropic frequency (see Table II).

We reproduced the process for several other distances
between the dots (L = 100, 200, and 500 nm). The evolution

inner part (IP)
(oscillating)

outer part (OP)
(quasistatic)

FIG. 8. (Color online) Illustration of the in-plane magnetization
of the two oscillating vortices. The outer (gray) zone represents
quasistatic magnetization [outer part (OP); r > X0]; the inner (green)
zone, oscillating magnetization [inner part (IP); r < X0]. Dashed
lines show the vortex orbital movement delimitation where r = X0.
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FIG. 9. (Color online) Numerical computation of the dipolar
energy (W num

int ) evolution of two interaction and synchronized vortices
extracted from micromagnetic simulations for L = 50 nm consider-
ing the IP region only (see Fig. 8). The dashed (blue) curve shows the
evolution of the in-phase oscillating vortices (with parallel polarities,
Pc1 configuration); the solid (red) curve, the antiphase case (vortices
with antiparallel polarities, APc1 configuration). Dotted colored lines
represent the corresponding mean values of the coupling energies
(〈W num

int 〉).

of the average interaction energy versus L extracted from
micromagnetic simulations is shown in Figs. 10 and 11 for both
Pc and APc configurations. The agreement between numerical
and Thiele-based estimations of the interacting energy is fairly
good, notably for a large interdot distance as shown in Fig. 10.
The interaction energy is much higher when the OP and the IP
regions are both considered (see Fig. 11).
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FIG. 10. (Color online) Interdot distance (D12 = 2R + L) de-
pendence of the absolute value of the mean coupling energy 〈Wint〉:
The case for parallel (antiparallel) polarities using a macrodipole and
Thiele equation approach model [filled squares (open squares)] and
by numerical dipole-dipole computation of the inner parts (IPs; see
Fig. 8) of the vortex core trajectories [filled circles (open circles)] are
shown in blue (red).
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FIG. 11. (Color online) Interdot distance (D12 = 2R + L) de-
pendence of the absolute value of the coupling energy (Wint): The case
for parallel (Pc) [antiparallel (APc)] polarities obtained by numerical
dipole-dipole computation for the whole volume (IP+OP) [filled
triangles (open triangles)] are shown in blue (red).

As discussed theoretically in Sec. IV, the macrodipole
model gives a ratio of 3 between the interaction energy for
the P and that for the AP core configurations. In contrast to
that prediction, it should be noted that for small values of
the edge-to-edge interdot distance L the ratio between the
calculated energies gets lower (∼2.6 for L = 50 nm).

The thermal fluctuations were not involved in our simu-
lations. Yet the obtained mean coupling energy |〈Wint〉| can
be easily compared against the thermal energy (kBT ). The
conditions for stable synchronization, i.e., |〈Wint〉| > kBT , are
then found to be D12 < 400 nm in the Pc1 configuration and
D12 < 550 nm in the APc1 configuration.

VIII. CONCLUSION

In conclusion, we have performed a comparative study of
vortex parameter configurations for the synchronization of
two dipolarly coupled spin transfer vortex-based oscillators.
As the major result of this numerical and analytical study,
we demonstrate that the effective coupling of two vortices
with opposite core polarities and hence gyrating in opposite
directions is larger than in the case of identical polarities.

By studying different contributions to the coupled vortex
dynamics, we have also shown that this configuration matches
with feasible experimental configurations. The optimal con-
figuration then corresponds to nanopillars connected in series.

Comparing the computed Wint (IP only) with the thermal
energy kBT , one obtains that synchronization can presumably
be achieved at D12 � 400 nm, in the case of the parallel polar-
ity configuration (Pc), while D12 � 550 would be sufficient in
the case of antiparellel polarities.

As far as phase-locking stability is concerned, we high-
lighted that the dipolar interaction continues to involve strong
oscillations in the coupling energy even after achieving
synchronization. These interactions will play against synchro-
nization and should decrease the minimum interpillar distance
to achieve synchronization.
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